Neurotransmitter release through the V0 sector of V-ATPase.

نویسندگان

  • N Morel
  • Y Dunant
  • M Israël
چکیده

Neurotransmitter release occurs at specialized areas of the nerve terminal membrane, the active zones, where clusters of synaptic vesicles, the neurotransmitter-storing organelles, are observed (Couteaux and PeÂcot-Dechavassine 1974; Harlow et al. 2001). In resting conditions, a population of synaptic vesicles is docked to the active zone membrane, close to voltage-gated calcium channels (Robitaille et al. 1990), within microdomains where, upon stimulation, cytosolic calcium reaches transiently a very high concentration (Llinas et al. 1992). In spite of the high specialization of the active zone structure and high speed of synaptic transmission, proteins involved in docking and fusion of synaptic vesicles are similar to those operating for much slower membrane fusions, from yeast to neurones (Wickner and Haas 2000). In this respect, the role of SNARE complexes for docking synaptic vesicles at the active zones has been well documented (Rothman 1994; Jahn and SuÈdhof 1999). A detailed genetic and pharmacological dissection of yeast homotypic vacuole fusion revealed the existence, after vacuole docking by trans-SNARE complex formation, of a Ca/calmodulin reaction preceeding the ®nal microcystininhibited step of membrane fusion (Wickner and Haas 2000). Recently, Peters et al. (2001) showed that it was the proteolipids of the membrane sector (V0) of V-ATPase which bind to calmodulin and initiate the ®nal step of membrane fusion. The vacuolar-type H-ATPase is indeed composed of a proteolipid membrane sector (V0) and a catalytic sector (V1). The association between V0 and V1 is reversible and participates in the regulation of proton pumping (Nelson and Harvey 1999). Reconstituted V0 proteolipids form a pore that opens in the presence of calcium and calmodulin. During the fusion of two yeast vacuoles, a V0 trans-complex is formed by the apposition of two proteolipid rings, brought into close contact by the SNARE proteins. The V0 trans-complex may therefore form a proteolipid channel spanning the two interacting membranes at the fusion site (Peters et al. 2001). We would like to discuss the relevance of this model for neurotransmitter release. Synaptosomal membranes were shown to contain a proteolipid oligomer that supported a calcium-dependent release of acetylcholine (ACh) when reconstituted in arti®cial membranes (IsraeÈl et al. 1986; see Fig. 1). This oligomer (mediatophore) turned out to be made of the proteolipid c subunit of V-ATPase (Birman et al. 1990). When cells were transfected for this proteolipid, they acquired a Ca-dependent ACh release mechanism that displayed quantal properties (Falk-Vairant et al. 1996; see Fig. 2). Such reconstitution experiments, using liposomes, transfected cells or Xenopus oocytes (Cavalli et al. 1993), showed that a single proteolipid ring not only opens upon calcium action but is suf®cient to let ACh out down its concentration gradient. This was con®rmed by Peters et al. (2001) who measured the release of choline through reconstituted yeast V-ATPase proteolipids, release that required Ca and, in this case, calmodulin. In synapses, the neurotransmitter is pre-concentrated in synaptic vesicles. This process depends on the proton gradient generated by the V-ATPase, and is blocked by N-N 0-dicyclohexylcarbodiimide (DCCD). In contrast, the ef ̄ux of ACh from already loaded synaptic vesicles is not affected by DCCD (Dolezal et al. 1993). This illustrates that ACh and protons follow different routes. Protons bind to a glutamic residue facing the exterior of the proteolipid ring (Harrison et al. 2000) and are translocated during the ATPdriven rotation of this ring (see Nelson and Harvey 1999 for a review on V-ATPases). ACh is most probably released through a pore found in the middle of the proteolipid oligomer by Jones et al. (1995).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

V-ATPase Membrane Sector Associates with Synaptobrevin to Modulate Neurotransmitter Release

Acidification of synaptic vesicles by the vacuolar proton ATPase is essential for loading with neurotransmitter. Debated findings have suggested that V-ATPase membrane domain (V0) also contributes to Ca(2+)-dependent transmitter release via a direct role in vesicle membrane fusion, but the underlying mechanisms remain obscure. We now report a direct interaction between V0 c-subunit and the v-SN...

متن کامل

Neurotransmitter release: the dark side of the vacuolar-H+ATPase.

Vacuolar-H+ATPase (V-ATPase) is a complex enzyme with numerous subunits organized in two domains. The membrane domain V0 contains a proteolipid hexameric ring that translocates protons when ATP is hydrolysed by the catalytic cytoplasmic sector (V1). In nerve terminals, V-ATPase generates an electrochemical proton gradient that is acid and positive inside synaptic vesicles. It is used by specifi...

متن کامل

The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery

Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I s...

متن کامل

A new life for an old pump: V-ATPase and neurotransmitter release

Neurons fire by releasing neurotransmitters via fusion of synaptic vesicles with the plasma membrane. Fusion can be evoked by an incoming signal from a preceding neuron or can occur spontaneously. Synaptic vesicle fusion requires the formation of trans complexes between SNAREs as well as Ca(2+) ions. Wang et al. (2014. J. Cell Biol. http://dx.doi.org/jcb.201312109) now find that the Ca(2+)-bind...

متن کامل

The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans

Polarized intracellular trafficking in epithelia is critical in development, immunity, and physiology to deliver morphogens, defensins, or ion pumps to the appropriate membrane domain. The mechanisms that control apical trafficking remain poorly defined. Using Caenorhabditis elegans, we characterize a novel apical secretion pathway involving multivesicularbodies and the release of exosomes at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 2001